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Known Nonsense 
Using Known Non-Information to Aid Model and Variable Selection 

Carl Formoso, Division of Child Support, Olympia, WA 
 
 
Abstract 
Model selection in regression analyses can be aided 
by the addition of known non-information. A 
randomly generated variable is known to have no 
explanatory or predictive power for any outcome of 
interest. When the random variable is selected as the 
‘best’ entry for model improvement we can be sure 
that the model is not improved, even though usual 
measures such as adjusted R square and Mallow’s Cp 
may show improvement. When the random variable 
remains in the model, later entered variables can 
also be considered to not improve the model. We 
also demonstrate the generation of randomness 
through disordering an existing variable to create a 
random variable with the exact values and 
distribution of a real variable. 
 
Introduction 
In physical sciences a common approach is to use a 
known commodity as a reference in determining an 
unknown commodity. In statistical analysis there is 
often little frame of reference, and no known 
relationships between explanatory variables and 
outcome variables. However it is easily possible to 
create the bottom of the scale by adding a variable 
known to have no explanatory or predictive power. 
We provide two examples in this paper. The first 
uses a variable randomly generated from a uniform 
distribution in an explanatory model, and the second 
uses a disordered form of an existing variable in a 
predictive model. 
 
Using a Randomly Generated Variable 
The first example is from the development of an 
explanatory  resource allocation model, where we are 
attempting to find relationships between employee 
work activities and agency outcome measures. The 
data comes from an automated system which 
captures individual work activities and from Federal 
Incentive Measures for child support collections. The 
analytical data set is created by the code below, with 
explanatory variables a4-a22, outcome variables o1-
o4, categories dt (month), fo (field office), emp 
(employee number), jc (job class), and sup 
(supervisor number), and random variable a3. It is 
useful to name the random variable so that when it is 
in the model, it will be listed first. 
 

data jc; 
infile  
   'd:\emodel\empfedincvjc.txt'; 
input  
   a4-a22  
   o1-o4 
   dt fo emp jc sup; 
a3=ranuni(0); 
run; 

Because we are considering models across 10 field 
offices, 7 job classes, and 4 outcomes it was 
necessary to automate the procedure as much as 
possible. For demonstration, the coding example 
below is a modified excerpt of the actual method, 
which is a macro procedure. 
 

ods listing close; 
%let i=2; 
%let j=7; 
 
proc reg data=jc; 
model o&i=a3-a22/ 
selection=rsquare 
   best=1 
   adjrsq cp mse sse; 
where jc=&j; 
ods output  
   SubsetSelSummary= tmpJ&j.O&i; 
run; 

 
PROC REG® with the model options specified will 
try all one-variable models, all two-variable models, 
and so on. The output would usually list all models 
in order of the best model for each number of 
variables, but the “best=1” option simply selects the 
first record, i.e., the best model, for each number of 
variables. 
 
Appendix Table 1 shows an example of results where 
the random variable enters the model and stays in 
while adjusted R square and Cp continue to show 
improvement. 
 
In this example a3 was the “best” third variable to 
enter the model even though the minimum value of 
Cp is for a 5 variable model.  Since we know a3 
contains no information relating to outcome o2, 
there must also be very little information relating to 
o2 in variable a20, a15, or any of the later entered 
variables because a3 remains in the model – no 
subsequent variable is able to replace it. The best 
model appears to be o2= a7   a21. 
 
It would be easy to automate finding a3 by a simple 
statement such as:                 
      if substr(varsinmodel,1,2)= “a3”  then . . . . 
 
But there are also situations, demonstrated in 
Appendix Table 2, where the random variable enters 
the model, then is removed, and finally enters to 
stay. 
 
Here a3 is part of the 5 variable model and the 6 
variable model, but is removed from the 7 variable 
model as are a8 and a17. The 12 variable model once 
again enters a3 and it is part of all subsequent 
models. Multicollinearity or interactive  effects may 
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have  caused this behavior. There are two possible 
model choices here, the 4 variable model before a3 
enters or the 10 variable model where Cp is minimal. 
We chose the 4 variable model. 
 
Creating Randomness by Disordering 
While creating a random variable from a standard 
distribution can be useful there are situations where 
it may be better to create a random variable which 
matches the values and distribution of an actual 
variable. We used the techniques described here in 
selecting input variables for a neural network 
predictive model for changes in child support 
arrearage debt. Starting with over one hundred 
candidate variables we were able to select ten 
variables with consistent predictive power, where no 
variable added to the set significantly increased 
predictive power. The core of the selection procedure 
measures the information gain of a variable against a 
scrambled version of the same variable. Because of 
the complexity of the full procedure, we present a 
simplified version here for demonstration. 
 
The code below will create a disordered version of an 
input variable. The data set pickS contains the 
ordered variable T95Q3 and the scrambled version 
T95Q3S, both with exactly the same values and 
distribution. 
 

data t95; 
   set pick; 
   keep T95q3S ro; 
   T95Q3S=T95q3; 
   ro=rannor(0); 
proc sort; 
   by ro; 
data pickS; 
   set pick; 
   set t95; 
   drop ro; 
run; 

 
Information content is related to the number of 
binary questions required to obtain the desired 
answer. When outcomes are not equally likely the 
following equation applies: 

I = - Σ N i log2 fi 

 
where I is information content, - log2 fi   measures 
the ‘bits’ of information for each correct prediction 
of outcome i, with N i the number of correct 
predictions for outcome i. 
 
 
 
 
 
 
 
 
 
 

The outcome frequencies, fi , are obtained from the 
known outcomes, for example using the code below. 
 

proc sql; 
   select 
    -log2(sum(miss)/count(ssn)) 
         into: mbit from pick; 
   select 
    -log2(sum(up)/count(ssn)) 
        into: ubit from pick; 
   select 
    -log2(sum(down)/count(ssn)) 
          into: dbit from pick; 
   select 
    -log2(sum(same)/count(ssn)) 
          into: sbit from pick; 

 
 
In the code below we use a multinomial linear model 
for demonstration – essentially a neural network 
with no hidden layer. 
 

proc glm data=pick ; 
   model miss up down same = 
              durp durn dur0; 
   output out=prd 
        p=pm pu pd ps; 
run; 

 
The predictions are converted to dichotomous 
outputs in the code shown below. 
 

data compare; 
   set prd; 
   keep miss up down same 
            m0 u0 d0 s0; 
   mx=max(pm,pu,pd,ps); 
   m0=mx=pm; 
   u0=mx=pu; 
   d0=mx=pd; 
   s0=mx=ps; 
run; 

 
Finally the code below allows an estimation of the 
information content extracted from the input 
variables. 
 

proc sql; 
   select mi+ui+di+si as info 
    from (select 
sum( m0=1 and miss=1)*&mbit as mi, 
sum(u0=1 and up=1)*&ubit as ui, 
sum( d0=1 and down=1)*&dbit as di, 
sum( s0=1 and same=1)*&sbit as si 
from compare); 

 
We next use the above methods to look at the 
information contained in the three most powerful 
predictors, and ask about the information contained 
in three examples of a fourth predictor.   
 
Our basic predictors are durations representing 
patterns of past debt behavior (see PROC GLM® 
code above) and in this simple model 199,769 bits of 
information for predicting debt are extracted from 
these three variables (see Appendix Table 3). 
 
Using the debt level in the “current” quarter as a 
fourth predictor gains additional information, but 
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the scrambled version adds no information.  This 
demonstrates both that T95Q3 has predictive power 
and that scrambling removes all information from 
T95Q3 (see Appendix Table 3). 
 
Scrambling works best for continuous variables such 
as T95Q3, but can also work for dichotomous 
variables. Using the gender of the debtor (NCPgen) 
as a fourth predictor gains additional information, 
with the scrambled version once again adding no 
information (see Appendix Table 3). 
 
However, with another dichotomous variable 
(Typem, an indicator for a rare case type) there is 
not much information gained and the scrambled 
version appears to retain some information (see 
Appendix Table 3). 
 
Typem is strongly skewed with only 0.6% valued 1. 
This already tells us that it’s unlikely to contain very 
much information. But scrambling will not have 
much effect on Typem because a zero-valued 
observation has a very high probability of remaining 
zero-valued after the scrambling. NCPgen has 12.3% 
valued 1 which is apparently enough so that 
scrambling completely removes the information 
contained in NCPgen. 
 
This approach also helps resolve the use of 
correlated variables. While NCPgen is shown to 
contain predictive information in the example 
presented above, it is not part of the final predictive 
model. NCPgen shows little information gain when 
other more powerful predictors, not discussed here, 
are in the model. The other variables are correlated 
with NCPgen and NCPgen adds no new information. 
However the final model does contain two strongly 
correlated variables. There is an overlap of 
information contained in the two variables, but each 
variable contributes predictive information not 
contained in the other. 
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Appendix 
 
 

Table 1: Random Variable which Remains in Model 
 

 
List truncated at 8 variable model 

 
 
 

Table 2: Random Variable which Enters Model, Leaves, and Re-enters  
 
 

 
List truncated at 12 variable model 

 
 
 

Table 3: Information Gain of Ordered and Disordered Variables 
 

 
X1 X2 X3 X4 Information, bits 

durp durn dur0 - 199,769 
durp durn dur0 T95Q3 201,456 
durp durn dur0 T95Q3S 199,769 
durp durn dur0 NCPgen 202,752 
durp durn dur0 NCPgenS 199,769 
durp durn dur0 Typem 199,922 
durp durn dur0 TypemS 199,781 

 

j Dependent NumInModel RSquare Adjrsq Cp VarsInModel
7 o2 1 0.320 0.312 20.040 a18
7 o2 2 0.410 0.396 7.739 a7 a21
7 o2 3 0.449 0.430 3.462 a3 a7 a21
7 o2 4 0.477 0.453 1.091 a3 a7 a20 a21
7 o2 5 0.496 0.466 0.065 a3 a7 a15 a20 a21
7 o2 6 0.506 0.472 0.363 a3 a6 a7 a18 a20 a21
7 o2 7 0.515 0.474 1.077 a3 a6 a7 a18 a20 a21 a22
7 o2 8 0.526 0.481 1.212 a3 a5 a6 a7 a18 a20 a21 a22

j Dependent NumInModel RSquare Adjrsq Cp VarsInModel
3 o2 1 0.8 52101 0.849257 59.30426 a22
3 o2 2 0.8 97091 0.893055 28.05485 a21 a22
3 o2 3 0.9 11818 0.906527 19.17092 a8 a21 a22
3 o2 4 0.9 20446 0.913952 14.79398 a8 a17 a21 a22
3 o2 5 0.9 24756 0.916918 13.60888 a3 a8 a17 a21 a22
3 o2 6 0.9 28083 0.918902 13.15043 a3 a8 a9 a17 a21 a22
3 o2 7 0.9 34423 0.924443 10.46483 a4 a6 a7 a9 a12 a21 a22
3 o2 8 0.9 39837 0.929141 8.463352 a4 a6 a7 a9 a12 a18 a21 a2 2
3 o2 9 0.94378 0.932281 7.549034 a4 a6 a9 a10 a12 a16 a17 a21 a2 2
3 o2 10 0.9 47564 0.935369 6.753033 a4 a6 a7 a9 a10 a12 a16 a1 7 a21  a22
3 o2 11 0.9 48936 0.935562 7.738769 a4 a6 a7 a9 a10 a12 a14 a1 6 a17  a21 a22
3 o2 12 0.9 50794 0.936392 8.3658 a3 a4 a6 a9 a10 a12 a14 a1 6 a17  a20 a21 a22


